• Zum Seiteninhalt (Accesskey 1)
  • Zur Hauptnavigation (Accesskey 2)
  • Bundesministerium Bildung, Wissenschaft und Forschung
  • Forschungsinfrastruktur-Datenbank
  • Start
  • Suche
  • Mapping
    • Statistiken nach Region
    • Cluster
    • Monitoring Förderungen
    • Galerie
  • Über
    • Forschungs­einrichtungen
    • Bundesministerium für Bildung, Wissenschaft und Forschung (BMBWF)
    • Wirtschaftskammer Österreich (WKÖ)
    • Bundesministerium für Arbeit und Wirtschaft (BMAW)
  • FAQs & Info
    • FAQs
      • Beschreibung zur Forschungs­infrastruktur
      • Methoden & Services zur Forschungs­infrastruktur
      • Kategorien zur Forschungs­infrastruktur
      • Zusätzliche Informationen zur Forschungs­infrastruktur
      • Suchmaschine: Fragen zur Suche
      • Kontakt
    • Information
      • Nationale Forschungs­infrastruktur­strategie
      • Forschungs­infrastrukturen in der Europäischen Union
      • Forschungs­infrastruktur-Datenbanken / Forschungs­infrastruktur-Netzwerke
  • Registrieren
  • Login
  • DE
  • EN
Großgerät

Bruker D8 ADVANCE DIFFRAKTOMETER SYSTEM

  • Zur Übersicht
  • »
  • 22 / 2244
  • »

Universität Salzburg

Salzburg | Website


Kurzbeschreibung

Bei dem Bruker D8 Advance Pulverröntgendiffraktometer handelt es sich um ein Gerät zur phasenanalytischen und strukturellen Charakterisierung von Pulvern und dünnen Schichten. Es ist mit einem schnellen Detektor ausgestattet und ermöglicht Messungen im Transmissions- und Reflexionsmodus. Das Gerät ist zusätzlich mit einem Mehrfachprobenwechsler ausgerüstet.

Ansprechperson

Prof. Dr. Günther Redhammer

Research Services

Quantitative und qualitative Phasenanalyse

Methoden & Expertise zur Forschungsinfrastruktur

Die Röntgenpulverdiffraktometrie ist die Standardmethode zur qualitativen und quantitativen Bestimmung des Phasenbestandes von pulverförmigen Proben. Sie ist eine vielseitige, zerstörungsfreie Methode, die auch detaillierte Informationen über den atomaren Aufbau (Kristallstruktur) sowohl von natürlich vorkommenden als auch synthetisch hergestellten Materialien liefern kann. Mit Hilfe entsprechender Software können Rietveld-Verfeinerungen der Messergebnisse durchgeführt und somit quantitative Phasenzusammensetzungen bestimmt und Kristallstrukturen verfeinert werden. Anwendungen finden sich im Bereich der Phasenidentifikation, z.B. Rauchgasreinigungs- und Filterrückstände, Keramiken, Farben, Gesteine, antike Fundstücke, Sedimente, und der Tonmineralanalyse, sowie der quantitative Phasenbestimmung, z.B. für Zementklinker, Erze, bzw. zum Phasenumsatz bei chemischen Reaktionen. Mit diesem Diffraktometer können auch Kleinwinkelmessungen und Messungen in Transmission durchgeführt werden.

Zuordnung zur Core Facility

Diffraktion

Nutzungsbedingungen

Bitte um Kontaktaufnahme mit der Universität Salzburg (science_plus@plus.ac.at) oder mit der/dem FI-Verantwortlichen.

Kooperationspartner

Fachbereich Molekulare Biologie, Universität Salzburg
Fachbereich Geographie und Geologie, Universität Salzburg
ÖAW
Tribotecc, Arnoldstein
Leube Betonwerk
Ebner Industrieofenbau
diverse Firmen (vertraulich)
Fachhochschule Landshut (n2m)

Referenzprojekte

Smart Materials
2018-2022
Hüsing N.; Tscheligi M.
IWB EFRE

Li2+2xCo1-xGeO4 als Kathodenmaterial
2017-2019
Schoiber Jürgen
FWF

Intergranulare Bereiche in nanokristallinen Keramiken
2017 - 2020
Diwald, Oliver
FWF

Li-oxide garnet 'Li7La3Zr2O12' doped with Ga and Fe2+/3+: A fast ion conductor for use in solid state Li-ion batteries.
2013-2017
Amthauer G., Geiger C.
FWF

Li-hochleitende Keramiken für all-solid-state Batterien
2014-2017
Amthauer G.
FFG

Novel Pt-poor catalysts for the electrocatalytic O2 reduction based on modified, nanostructured metal oxides
2013-2016
Hüsing N., Behm R.J.
FWF/DFG

Synthese, Charakterisierung und technologische Fertigungsansätze für den Leichtbau 'n2m' (nano-to-macro)
2015-2018
Hüsing, N.; Diwald, O.; Musso, M.; Bourret, G.; Redhammer, G.; Huber, O.; Saage, H.
Interreg Österreich-Bayern

Geochemical and physical research within the LOREX-project II
2008 - 2010, 2013-2016
Amthauer, G.
FWF

Kristallstruktur und Eigenschaften von Valeriit
2007-2011
Redhammer, G.J.
FWF

Referenzpublikationen

3D Printing of Hierarchical Porous Silica and a-Quartz
2018
Florian Putz, Sebastian Scherer, Michael Ober, Roland Morak, Oskar Paris, Nicola Hüsing
Advanced Materials Technology, 2018, 1800060
https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201800060
https://doi.org/10.1002/admt.201800060

Structural and Raman spectroscopic characterization of pyroxene-type compounds in the CaCu1xZnxGe2O6 solid-solution series
2017
Günther J. Redhammer, Gerold Tippelt, Andreas Reyer, Reinhard Gratzl and Andreas Hiederer
Acta Crystallographica, 2017, B73, 419-431
http://scripts.iucr.org/cgi-bin/paper?S205252061700381X
https://doi.org/10.1107/S205252061700381X

Monolithic porous magnesium silicide
2017
Nastaran Hayati-Roodbari, Raphael J.F. Berger, Johannes Bernardi, Sahin Kinge, Nicola Hüsing, Michael S. Elsaesser,
Dalton Transaction, 2017, 46, 8855-8860.
https://pubs.rsc.org/en/content/articlehtml/2017/dt/c7dt00571g
https://DOI:10.1039/c7dt00571g

A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series
2017
G.J. Redhammer
Physics and Chemistry of Minerals, 2017, 44(9), 669-684
https://link.springer.com/article/10.1007/s00269-017-0892-3
10.1007/s00269-017-0892-3

Fast Li-Ion-Conducting Garnet-Related Li7-3x Fe x La3Zr2O12 with Uncommon I43d Structure
2016
R. Wagner, G.J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, G. Amthauer
Chemistry of Materials, 2016,
https://pubs.acs.org/doi/10.1021/acs.chemmater.6b02516
10.1021/acs.chemmater.6b02516

Synthesis and electrocatalytic performance of spherical core-shell tantalum (oxy)nitride@nitrided carbon composites in the oxygen reduction reaction
2017
M. Wassner, M. Eckardt, C. Gebauer, G. R. Bourret, N. Hüsing, R. J. Behm
Electrochimica Acta, 2017, 227, 367-381
https://www.sciencedirect.com/science/article/pii/S0013468616327049
DOI:10.1016/j.electacta.2016.12.145

Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes
2016
D. Rettenwander, G.J. Redhammer, F. Preishuber-Pflugl, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M.M. Doeff, M. Wilkening, J. Fleig, G. Amthauer, G.
Chemistry of Materials, 2016, 28(7), 2384-2392
https://pubs.acs.org/doi/10.1021/acs.chemmater.6b00579
10.1021/acs.chemmater.6b00579

Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4+ by Mo6+
2015
Rettenwander, D.; Welzl, A.; Cheng, L.; Fleig, J.; Musso, M.; Suard, E.; Doeff, M.M.; Redhammer, G.J.; Amthauer, G.
Inorganic Chemistry, 2015, 21, 10440-10449
https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01895
DOI: 10.1021/acs.inorgchem.5b01895

Defect and Surface Area Control in Hydrothermally Synthesized LiMn0.8Fe0.2PO4 Using a Phosphate Based Structure Directing Agent
2015
Schoiber, J.; Tippelt, G.; Redhammer, G.J.; Yada, C.; Dolotko, O.; Berger, R.J.F., Husing, N.
CRYSTAL GROWTH & DESIGN, 2015, 15(9), 4213-4218
https://pubs.acs.org/doi/10.1021/acs.cgd.5b00324
DOI: 10.1021/acs.cgd.5b00324

Thin water films and magnesium hydroxide fiber growth
2015
Gheisi, A.; Sternig, A.; Redhammer, G.J.; Diwald, O.
RSC ADVANCES, 2015, 5(100), 82564-82569
https://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/c5ra18202f
DOI: 10.1039/c5ra18202f

A Two-Step Synthesis for Li2CoPO4F as High-Voltage Cathode Material
2015
Schoiber, J.; Berger, R.J.F.; Yada, C.; Miki, H.; Husing, N.
Journal of the Electrochemical Socienty, 2015, 162(14), A2679-A2683
http://jes.ecsdl.org/content/162/14/A2679.full
doi: 10.1149/2.0331514jes

Structural and magnetic phase transitions in the synthetic clinopyroxene LiCrGe2O6: a neutron diffraction study between 0.5 and 1473 K
2015
G.J. Redhammer, A. Senyshyn, G. Tippelt, S. Prinz, G. Roth
Physics and Chemistry of Minerals, 2015, 42(6), 41-507
https://link.springer.com/article/10.1007%2Fs00269-015-0738-9
10.1007/s00269-015-0738-9

Giant rockslides from the inside
2014
J.T. Weidinger, O.Korup, H. Munack, U. Altenberger, S.A. Stuart, G. Tippelt, W. Lottermoser
Earth and Planetary Science Letters, 2014, 389, 62-73
https://www.sciencedirect.com/science/article/pii/S0012821X13007231
10.1016/j.epsl.2013.12.017

Crystal and magnetic spin structure of Germanium-Hedenbergite, CaFeGe2O6, and a comparison with other magnetic/magnetoelectric/multiferroic pyroxenes
2013
G.J. Redhammer, G. Roth, A. Senyshyn, G. Tippelt, C. Pietzonka
Zeitschrift für Kristallographie, 2013, 228(3), 140-150
https://www.degruyter.com/view/j/zkri.2013.228.issue-3/zkri.2013.1586/zkri.2013.1586.xml
10.1524/zkri.2013.1586

Thermal expansion and high-temperature P2(1)/c-C2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)(2)O6
2010
G.J. Redhammer, F. Camara, M. Alvaro, F. Fabrizio, G. Tippelt, S. Prinz, J. Simons, Roth, G., G. Amthauer
Physics and Chemistry of Minerals, 2010, 37(10), 685-704
https://link.springer.com/article/10.1007%2Fs00269-010-0368-1
10.1007/s00269-010-0368-1

Kontakt

Prof. Dr. Günther Redhammer
Fachbereich Chemie und Physik der Materialien
+43-662-8044-6235
guenther.redhammer@plus.ac.at
https://www.plus.ac.at/chemie-und-physik-der-materialien/

Standort

Standort auf Karte

Diesen Eintrag teilen

  • Facebook
  • Twitter
  • Pinterest
  • E-Mail
© 2023 BUNDESMINISTERIUM für BILDUNG, WISSENSCHAFT und FORSCHUNG
  • Nutzungsbedingungen / Datenschutz
  • Barrierefreiheitserklärung
  • Impressum
  • Datenschutz-Einstellungen