Kurzbeschreibung
Die Ionendünnungsanlage (Precision Ion Polishing System (PIPS II)) wird in der Probenpräparation für die Transmissionselektronenmikroskopie angewandt.
Mit der PIPS II von GATAN ist es möglich konventionelle und Querschnittsproben mittels Ar-Ionen mit einer Beschleunigungsspannung von 0.1 kV bis 8 kV auf eine Dicke von bis zu 10 nm zu dünnen.
Ein eingebautes hochauflösendes digitales Lichtmikroskop ermöglicht die zielgenaue Präparation. Die Probe kann mittels flüssigem Stickstoff gekühlt werden, um die Erwärmung der Probe während des Dünnungsprozesses zu verringern. Des Weiteren können FIB-Proben (Focused Ion Beam) ebenfalls auf die gewünschte Dicke nachgedünnt werden.
Ansprechperson
Prof. Dr. Oliver Diwald
Research Services
Zielpräparation von verschiedensten Proben für die Transmissionselektronenmikroskopie
Methoden & Expertise zur Forschungsinfrastruktur
Zielpräparation von verschiedensten Proben für die Transmissionselektronenmikroskopie
• konventionelle Proben (Metalle, Keramiken, Halbleiter, Polymere)
• Querschnittsproben
• Nachdünnung von FIB Proben
• Reinigung von Artefakten wie amorphe Bereiche und Oxid-Schichten
Zuordnung zur Forschungsinfrastruktur
2015-2018
Hüsing, N.; Diwald, O.; Musso, M.; Bourret, G.; Redhammer, G.; Huber, O.; Saage, H.
Interreg Österreich-Bayern 2014- 2020
https://www.interreg-bayaut.net/projekte/liste-der-vorhaben/projektzusammenfassung-ab29
Charge separation within graded metal oxide nanocomposites
2023-2026
Diwald, O.; Bourret, G.
FWF
BioMatTEM
2022-2024
Pokrant S.; Meisner-Kober, N.;Bourret, G.
FFG
E(co)-Forming
2021-2024
Hüsing, N.; Zickler, G.; Österreicher, J.
FFG, LKR, Voestalpine, Infineon, PhysTech, AIT
2018
Johannes A Österreicher, Florian Grabner, Andreas Schiffl, Sabine Schwarz, Gilles R, Bourret
Materials Characterization
https://www.sciencedirect.com/science/article/pii/S1044580317322295
DOI: https://doi.org/10.1016/j.matchar.2018.01.049
Secondary precipitation during homogenization of Al-Mg-Si alloys: Influence on high temperature flow stress
2017
Österreicher J. A., Kumar K., Schiffl A., Schwarz S., Bourret G. R.
Materials Science and Engineering: A
https://www.sciencedirect.com/science/article/pii/S0921509317300990
DOI: https://doi.org/10.1016/j.msea.2017.01.074
Iron Precursor Decomposition in the Magnesium Combustion Flame: A New Approach for the Synthesis of Particulate Metal Oxide Nanocomposites
2017
Gheisi A.R., Niedermaier M., Tippelt G., (...), Bernardi J., Diwald O.
Particle and Particle Systems Characterization; 34(10),1700109
Three-Dimensional Lithography on Si Micro- and Nanowire Arrays
2018
F. J. Wendisch, Michael S. Saller, A. Eadie, A. Reyer, M. Musso, M. Rey, N. Vogel, O. Diwald, and G. Bourret
Nano Letters
https://doi.org/10.1021/acs.nanolett.8b03608
Spatioselective Deposition of Passivating and Electrocatalytic Layers on Si Nanowire Arrays
2020
F. J. Wendisch, M. Abazari, V. Werner, H. Barb, M. Rey, E.S.A. Goerlitzer, N. Vogel, H. Mahdavi, and G. R. Bourret
ACS AMI
https://doi.org/10.1021/acsami.0c14013
Selective Enhancement of Surface and Bulk E-Field within Porous AuRh and AuRu Nanorods
2021
Piaskowski, Alisher Ibragimov, Fedja J. Wendisch and Gilles R. Bourret
J. Phys. Chem. C
https://doi.org/10.1021/acs.jpcc.1c08699
Selective Enhancement of Surface and Bulk E-Field within Porous AuRh and AuRu Nanorods
2021
Piaskowski, Alisher Ibragimov, Fedja J. Wendisch and Gilles R. Bourret
J. Phys. Chem. C
https://doi.org/10.1021/acs.jpcc.1c08699
Rh in the gap: maximizing E-field enhancement within nanorod heterodimers†
2023
Joshua Piaskowski, Georg Haberfehlner, Theresa Bartschmid, Gerald Kothleitner, Martin Steinhart and Gilles R. Bourret
J. Mater. Chem. C
https://pubs.rsc.org/en/content/articlehtml/2023/tc/d3tc00957b
Charge Separation in BaTiO3 Nanocrystals: Spontaneous Polarization Versus Point Defect Chemistry
2023
E Neige, T Schwab, M Musso, T Berger, GR Bourret, O Diwald
Small
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202206805
e2206805