Kurzbeschreibung
Die Forschungsinfrastruktur kann in zwei Bereiche gegliedert werden.
1. Lumineszenz-Messlabor zum Messen von optisch oder thermisch stimulierten Lumineszenzsignalen (OSL/TL):
Dazu steht ein Lexsyg Smart Lumineszenzmessgerät der Firma Freiberg Instruments zur Verfügung, das zur Routinemessung von OSL und TL Signalen im Einsatz ist.
2. Präparationslabor für die physikalische und chemische Aufbereitung der Messproben:
Im rotgedimmten Dunkellabor werden die lichtsensitiven Proben routinemäßig aufbereitet und für die Lumineszenzmessung vorbereitet.
• Tischbohrgerät mit diamantbesetztem Hohlbohrer • Präzisionstrennschneidegerät mit diamantbesetztem Schneideblatt
• HF-geeigneter Filterabzug
• Sonstige Laborgeräte für die physikalische und chemische Probenaufbereitung
Ansprechperson
Prof. Dr. Andreas Lang
Research Services
• OSL und TL Messung (z.B. Altersbestimmung von Sedimenten, Gesteinen und Artefakten, Lumineszenzcharakterisierung diverser Materialien für wissenschaftliche Fragestellungen (Dosimetrie)
• Physikalische Probenaufbereitung: Bohrkernziehen mittels diamantbesetztem Hohlbohrer, Schneiden mittels diamantbesetztem Präzisionstrennschneidegerät, Siebung und Schweretrennung
• Chemische Probenaufbereitung: Reinigen und Ätzen von Proben, inkl. Flusssäure-Ätzen von Quarzproben
Methoden & Expertise zur Forschungsinfrastruktur
Physikalische und chemische Aufbereitung von Sediment- und Gesteinsproben für die Lumineszenzmessung
• Wassergekühltes Tischbohrgerät mit diamantbesetztem Hohlbohrer
• Wassergekühltes Präzisionstrennschneidegerät mit diamantbesetztem Schneideblatt
• HF-geeigneter Filterabzug
• Sonstige Laborgeräte für die physikalische und chemische Probenaufbereitung
Lumineszenzmessgerät Lexsyg Smart
• Standard-Lumineszenzmessung durch thermische Stimulation (Aufheizen der Probe bis 710°C mit frei programmierbaren Heizraten) und optische Stimulation mittels drei unterschiedlichen Stimulationswellenlängen (blaue LEDs 458 nm, grüne LEDs 525 nm und IR-LEDs 850 nm)
• Detektion des OSL und TL Signals mittels im sichtbaren Wellenlängenbereich sensitiven Photomultiplier (300-650 nm) und vorgeschaltetem Detektionsfilterwechsler inkl. Interferenz- und Glasfilter für optimierte Detektionsfenster
• Kalibrationsbestrahlungen der Proben im Messgerät mit fest eingebauter, umschlossener Sr-90 Betastrahlenquelle
Equipment
Coastal Carolina University, USA
Freiberg Instruments GmbH, Freiberg, Deutschland
Gyeongsang National University (GNU), College of Natural Science, Jinju, Republic of Korea)
Helmholtz Zentrum München (HMGU), Neuherberg, Deutschland
Hiroshima University, Hiroshima, Japan
Institute of Nuclear Physics, Department of Radiation Physics and Dosimetry (IFJ), Kraków, Poland
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, Frankreich
Korea Atomic Energy Research Institute (KAERI), Radiation Dosimetry Team, Daejeon, Republic of Korea
Ludwig-Maximilians-Universität München (LMU), München, Deutschland
Technische Universität München (TUM), München, Deutschland
Tromsø University Museum, Tromsø, Norwegen
Université catholique de Louvain, Belgien
Universität Bonn, Deutschland
Universität Innsbruck, Österreich
Université de Lausanne, Schweiz
University of Southampton, UK
University of York, UK
University of Barcelona, Spanien
Universität Wien, Österreich
2018-2026
Prof. A. Lang
ERC Advanced grant
Luminescence spectroscopy for retrospective radiation dosimetry - a continuous collaboration between Korean and Austrian luminescence laboratories
2018-2019
Univ.-Prof. Dr. A. Lang, Dr. M. Discher, in cooperation with Dr. J. Lee and Prof. K.S. Chung
Founded by Eurasia Pacific Uninet (EPU) network by funds of the Federal Ministry of Science, Research and Economy (BMWFW)
Project with Hiroshima University “Developing practical techniques of retrospective dosimetry for the public in radiological emergencies“
2018-2022
Prof. H. Yasuda, Dr. M. Discher, S. Hirota
KAKENHI (Japanese governmental research fund: JSPS 18KK0147), funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology), the Government of Japan
Luminescence spectroscopy for retrospective radiation dosimetry – a laboratory comparison between Korea and Austria
2017-2018
Univ.-Prof. Dr. A. Lang, Dr. M. Discher, in cooperation with Dr. J. Lee and Prof. K.S. Chung
Founded by Eurasia Pacific Uninet (EPU) network by funds of the Federal Ministry of Science, Research and Economy (BMWFW)
hier FODOK Link (muss zu einem späteren Zeitpunkt ergänzt werden)
Inter-comparison exercise for retrospective dosimetry – in the framework of European Radiation Dosimetry Group (EURADOS)
since 2016
Univ.-Prof. Dr. A. Lang, Dr. M. Discher, in cooperation with international members of the EURADOS network
EURADOS e.V.
http://eurados.org
RetroDOS (Retrospective Dosimetry)
2020-2021
Dr. M. Discher, in cooperation with Dr. J. Lee, Dr. H. Kim
R&D Project between KAERI and PLUS, supported by the National Research Fundation of Korea (NRF) grant funded by the Korean Government (Ministry of Science and ICT)
RetroDOS2 (Retrospective Dosimetry)
2022-2024
Dr. M. Discher, in cooperation with Dr. J. Lee, Dr. H. Kim
R&D Project between KAERI and PLUS, supported by the National Research Fundation of Korea (NRF) grant funded by the Korean Government (Ministry of Science and ICT)
Joining up to improve usage of mobile phone protective glass for retrospective dosimetry (ProGlaDos)
2021-2023
Dr. M. Discher, in cooperation with Dr. C. Bassinet (IRSN)
Austria / France Scientific & Technological Cooperation (WTZ Programme), OeAD
A novel and fast method for dose estimation in emergency dosimetry by measuring luminescence of pharmaceuticals (EmDosPharm)
2022-2024
Dr. M. Discher, in cooperation with Dr. A. Mrozik (IFJ PAN)
Austria / Poland Scientific & Technological Cooperation (WTZ Programme), OeAD
2019
Discher, M., Dornich, K., Richter, A., Mauz, B., Lang, A.
Radiation Measurements 124, 13-18
DOI: https://doi.org/10.1016/j.radmeas.2019.02.017
PTTL characteristics of glass samples from mobile phones
2020
Discher, M., Woda, C., Lee, J., Kim, H., Chung K., Lang, A.
Radiation Measurements 132, 106261
DOI: https://doi.org/10.1016/j.radmeas.2020.106261
Characterization of thermoluminescence of chip cards for emergency dosimetry
2020
Kim. H., Kim, M.C., Lee, J., Discher, M., Woda, C., Lim, S., Chang, I., Lee, S.K., Kim, J.L., Chung, K.
Radiation Measurements 134, 106321
DOI: https://doi.org/10.1016/j.radmeas.2020.106321
Estimation of dose and elapsed time after unrecognized high-dose radiation exposure using the continuous-wave optically stimulated luminescence from Mg2SiO4:Tb
2020
Yasuda, H., Discher, M.
Radiation Measurements 139, 106474
DOI: https://doi.org/10.1016/j.radmeas.2020.106474
Uncertainty evaluation for organ dose assessment with optically stimulated luminescence measurements on mobile phone resistors after a radiological incident
2021
Van Hoey, O., Römkens, D., Eakins, J., Kouroukla, E., Discher, M., Vanhavere, F.,
Radiation Measurements 141, 106520
DOI: https://doi.org/10.1016/j.radmeas.2021.106520
Technical note: On the reliability of laboratory beta-source calibration for luminescence dating
2021
Mauz, B., Martin, L., Discher, M., Tribolo, C., Kreutzer, S., Bahl, C., Lang, A., Mercier, N.
Geochronology, 3, 371–381
DOI: https://doi.org/10.5194/gchron-3-371-2021
Thermally assisted optically stimulated luminescence protocol of mobile phone substrate glasses for accident dosimetry
2021
Kim, H., Discher, M., Kim, M.C., Woda, C., Lee, J.
Radiation Measurements 146, 106625
DOI: https://doi.org/10.1016/j.radmeas.2021.106625
Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry
2022
Discher, M., Kim, H., Lee, J.
Nuclear Engineering and Technology 54, 429-436
DOI: https://doi.org/10.1016/j.net.2021.07.027
A small-scale realistic inter-laboratory accident dosimetry comparison using the TL/OSL from mobile phone components
2022
Kim, H., Yu, H., Discher, M., Kim, M.C., Choi, Y., Lee, H., Lee, J.T., Lee, H., Kim, Y.-S., Kim, H.S., Lee, J.
Radiation Measurements 150, 106696
DOI: https://doi.org/10.1016/j.radmeas.2021.106696
Mobile phone screen protector glass: A TL investigation of the intrinsic background signal
2022
Bassinet, C., Discher, M., Ristic, Y., Woda, C.
Front Public Health. 10:969330
DOI: https://doi.org/10.3389/fpubh.2022.969330
Life before Stonehenge: The hunter-gatherer occupation and environment of Blick Mead revealed by sedaDNA, pollen and spores
2022
Samuel M. Hudson, Ben Pears, David Jacques, Thierry Fonville, Paul Hughes, Inger Alsos, Lisa Snape, Andreas Lang, Antony Brown
PLoS ONE 17(4): e0266789,
DOI: https://doi.org/10.1371/journal.pone.0266789
A TL study of protective glasses of mobile phones for retrospective dosimetry
2023
Discher, M., Bassinet, C., Woda, C.
Optical Materials: X 18, 100233
DOI: https://doi.org/10.1016/j.omx.2023.100233
RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays
2023
Port, M., Barquinero, J-F., Endesfelder, D., Moquet, J., Oestreicher, U., Terzoudi, G., Trompier, F., Vral, A., Abe, Y., Ainsbury, L., Alkebsi, L., Amundson, S.A., Badie, C., Baeyens, A., Balajee, A.S., Balázs, K., Barnard, S., Bassinet, C., Beaton-Green, L.A., Beinke, C., Bobyk, L., Brochard, P., Brzoska, K., Bucher, M., Ciesielski, B., Cuceu, C., Discher, M., Oca, M.C.D., Domínguez, I., Doucha-Senf, S., Dumitrescu, A., Duy, P.N., Finot, F., Garty, G., Ghandhi, S.A., Gregoire, E., Goh, V.S.T., Güçlü, I., Hadjiiska, L., Hargitai, R., Hristova, R., Ishii, K., Kis, E., Juniewicz, M., Kriehuber, R., Lacombe, J., Lee, Y., Lopez Riego, M., Lumniczky, K., Mai, T.T., Maltar-Strmečki, N., Marrale, M., Martinez, J.S., Marciniak, A., Maznyk, N., McKeever, S.W.S., Meher, P.K., Milanova, M., Miura, T., Monteiro Gil, O., Montoro, A., Moreno Domene, M., Mrozik, A., Nakayama, R., O'Brien, G., Oskamp, D., Ostheim, P., Pajic, J., Pastor, N., Patrono, C., Pujol-Canadell, M., Prieto Rodriguez, M.J., Repin, M., Romanyukha, A., Rößler, U., Sabatier, L., Sakai, A., Scherthan, H., Schüle, S., Seong, K.M., Sevriukova, O., Sholom, S., Sommer, S., Suto, Y., Sypko, T., Szatmári, T., Takahashi-Sugai, M., Takebayashi, K., Testa, A., Testard, I., Tichy, A.ii A., Triantopoulou, S., Tsuyama, N., Unverricht-Yeboah, M., Valente, M., Van Hoey, O., Wilkins, R.C., Wojcik, A., Wojewodzka, M., Younghyun, L., Zafiropoulos, D., Abend, M.
Radiation Research, 199(6):535-555
DOI: https://doi.org/10.1667/RADE-22-00207.1
Feasibility study of using earbuds and wireless headphones for retrospective dosimetry
2023
Discher, M., Bassinet, C., Kim, H.
Radiation Measurements 167, 107000
DOI: https://doi.org/10.1016/j.radmeas.2023.107000
OSL at elevated temperature of smart chip cards for retrospective dosimetry
2024
Kim, H., Woda, C., Discher, M.
Radiat. Phys. Chem. 217, 111520
DOI: https://doi.org/10.1016/j.radphyschem.2024.111520
Assessment of existing emergency dosimetry protocols for electronic devices - a feasibility study to support emergency response
2024
Discher, M., Kuźnik, D., Bilski, P., Kłosowski, M., Mrozik, A.
Radiat. Phys. Chem. 221, 111729
DOI: https://doi.org/10.1016/j.radphyschem.2024.111729
On the use of new vs. heated sample carriers for luminescence measurements
2024
Discher, M., Bassinet, C., Kim, H.
Radiatiation Measurements 174, 107136
DOI: https://doi.org/10.1016/j.radmeas.2024.107136
Lynchet-Type Terraces, Loess, and Agricultural Resilience on Chalk Landscapes in the UK and Belgium
2024
BEN PEARS, ANDREAS LANG, DAN FALLU, MARK ROBERTS, DAVID JACQUES, LISA SNAPE, CHIARA BAHL, KRISTOF VAN OOST, PENGZHI ZHAO, PAOLO TAROLLI, SARA CUCCHIARO, KEVIN WALSH, ANTONY BROWN
European Journal of Archaeology, pp. 1–24
DOI: https://doi.org/10.1017/eaa.2024.6