Kurzbeschreibung
Das Additive Manufacturing Lab ist ein Forschungslabor, in dem die Werkstoff- und Prozessentwicklung für die additive Fertigung mit pulverbettbasierten Fertigungsverfahren von Metallen und Legierungen ganzheitlich vom Pulver bis zum Bauteil untersucht wird. Das Additive Manufacturing Lab gehört zur Arbeitsgruppe Werkstoffwissenschaften am Institut für Mechatronik/AB MAschinenbau der Universität Innsbruck und befindet sich am Campus Technik.
Ansprechperson
Ass.-Prof. Dr. Lukas Kaserer
Research Services
- Forschung auf dem Gebiet der additiven Fertigung von Metallen
- Entwicklung von Werkstoffen für die additive Fertigung
- Prozessentwicklung Laserschmelzen
- Herstellung von Legierungspulver für die additive Fertigung
Methoden & Expertise zur Forschungsinfrastruktur
Derzeit können nur wenige metallische Werkstoffe so verarbeitet werden, dass anwendungsgerechte Eigenschaften resultieren. Dies liegt insbesondere am fehlenden Grundlagenverständnis für die eigenschaftsrelevanten Mechanismen. Dieses Grundlagenverständnis zu schaffen, stellt einen Schwerpunkt der Forschungsaktivitäten dar. Basierend auf diesen Erkenntnissen werden die Verfahrensschritte und die Legierungszusammensetzung so angepasst, dass Hochleistungswerkstoffe mit anwendungsgerechten Eigenschaften hergestellt werden können.
Equipment
2. Kaserer, L., Braun, J., Stajkovic, J., Leitz, K. H., Tabernig, B., Singer, P., ... & Leichtfried, G. (2019). Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon. International Journal of Refractory Metals and Hard Materials, 84, 105000.
3. Braun, J., Kaserer, L., Letofsky-Papst, I., Leitz, K. H., Kestler, H., & Leichtfried, G. (2020). On the role of carbon in molybdenum manufactured by Laser Powder Bed Fusion. International Journal of Refractory Metals and Hard Materials, 92, 105283.
4. Riener, K., Albrecht, N., Ziegelmeier, S., Ramakrishnan, R., Haferkamp, L., Spierings, A. B., & Leichtfried, G. J. (2020). Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF). Additive Manufacturing, 34, 101286.
5. Kaserer, L., Braun, J., Stajkovic, J., Leitz, K. H., Singer, P., Letofsky-Papst, I., ... & Leichtfried, G. (2020). Microstructure and mechanical properties of molybdenum-titanium-zirconium-carbon alloy TZM processed via laser powder-bed fusion. International Journal of Refractory Metals and Hard Materials, 93, 105369.
6. Kaserer, L., Bergmueller, S., Braun, J., & Leichtfried, G. (2020). Vacuum laser powder bed fusion—track consolidation, powder denudation, and future potential. The International Journal of Advanced Manufacturing Technology, 110, 3339-3346.
7. Riener, K., Oswald, S., Winkler, M., & Leichtfried, G. J. (2021). Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF). Additive Manufacturing, 39, 101896.
8. Mair, P., Kaserer, L., Braun, J., Weinberger, N., Letofsky-Papst, I., & Leichtfried, G. (2021). Microstructure and mechanical properties of a TiB2-modified Al–Cu alloy processed by laser powder-bed fusion. Materials Science and Engineering: A, 799, 140209.
9. Schimbäck, D., Braun, J., Leichtfried, G., Clemens, H., & Mayer, S. (2021). Laser powder bed fusion of an engineering intermetallic TiAl alloy. Materials & Design, 201, 109506.
10. Mair, P., Goettgens, V. S., Rainer, T., Weinberger, N., Letofsky-Papst, I., Mitsche, S., & Leichtfried, G. (2021). Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy. Journal of Alloys and Compounds, 863, 158714.
11. Haferkamp, L., Haudenschild, L., Spierings, A., Wegener, K., Riener, K., Ziegelmeier, S., & Leichtfried, G. J. (2021). The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals, 11(3), 418.
12. Schimbäck, D., Mair, P., Bärtl, M., Palm, F., Leichtfried, G., Mayer, S., ... & Pogatscher, S. (2022). Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturing. Scripta Materialia, 207, 114277.
13. Braun, J., Kaserer, L., Stajkovic, J., Kestler, H., & Leichtfried, G. (2022). Grain refinement mechanisms of alloying molybdenum with carbon manufactured by laser powder bed fusion. Materials & Design, 215, 110507.
14. Mair, P., Braun, J., Kaserer, L., March, L., Schimbäck, D., Letofsky-Papst, I., & Leichtfried, G. (2022). Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusion. Materials Today Communications, 31, 103353.
15. Schimbäck, D., Mair, P., Kaserer, L., Perfler, L., Palm, F., Leichtfried, G., & Pogatscher, S. (2022). An improved process scan strategy to obtain high-performance fatigue properties for Scalmalloy®. Materials & Design, 224, 111410.
16. Mair, P., Kaserer, L., Braun, J., Stajkovic, J., Klein, C., Schimbäck, D., ... & Leichtfried, G. (2022). Dependence of mechanical properties and microstructure on solidification onset temperature for Al2024–CaB6 alloys processed using laser powder bed fusion. Materials Science and Engineering: A, 833, 142552.
17. Riener, K., Pfalz, T., Funcke, F., & Leichtfried, G. (2022). Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF). The International Journal of Advanced Manufacturing Technology, 1-15.
18. Bergmueller, S., Kaserer, L., Fuchs, L., Braun, J., Weinberger, N., Letofsky-Papst, I., & Leichtfried, G. (2022). Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties. Heliyon, 8(8).
19. Mair, P., Letofsky-Papst, I., & Leichtfried, G. (2022). Microstructural features and mechanical properties of a novel Ti-and Zr-modified Al-Mn alloy processed by laser powder bed fusion. Journal of Alloys and Compounds, 897, 163156.
20. Riener, K., Nagler, A., Letofsky-Papst, I., & Leichtfried, G. (2022). Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder. Alloys, 1(3), 277-287.
21. Goettgens, V. S., Kaserer, L., Braun, J., Letofsky-Papst, I., Mitsche, S., & Leichtfried, G. (2023). Microstructure of a modulated Ti-6Al-4V–Cu alloy fabricated via in situ alloying in laser powder bed fusion. Materialia, 28, 101731.
22. Schimbäck, D., Kaserer, L., Mair, P., Palm, F., Leichtfried, G., Pogatscher, S., & Hohenwarter, A. (2023). Deformation and fatigue behaviour of additively manufactured Scalmalloy® with bimodal microstructure. International Journal of Fatigue, 172, 107592.
23. Bergmueller, S., Gerhold, L., Fuchs, L., Kaserer, L., & Leichtfried, G. (2023). Systematic approach to process parameter optimization for laser powder bed fusion of low-alloy steel based on melting modes. The International Journal of Advanced Manufacturing Technology, 126(9), 4385-4398.
24. Kaserer, L., Braun, J., Stajkovic, J., Leitz, K. H., Singer, P., Letofsky-Papst, I., ... & Leichtfried, G. (2023). Molybdenum alloy Mo-Ti-Zr-C adapted for laser powder bed fusion with refined isotropic microstructure and excellent high temperature strength. International Journal of Refractory Metals and Hard Materials, 113, 106174.
25. Goettgens, V. S., Kaserer, L., Braun, J., Busch, R., Berthold, L., Patzig, C., & Leichtfried, G. (2023). Microstructural evolution and mechanical properties of Ti-6Al-4V in situ alloyed with 3.5 wt.% Cu by laser powder bed fusion. Materialia, 32, 101928.
26. Kaserer, L., Brennsteiner, D., Braun, J., Goettgens, V., Letofsky-Papst, I., Singer, P., ... & Leichtfried, G. (2023). Solute-induced grain refinement and defect suppression in boron-modified molybdenum manufactured via laser powder-bed fusion. International Journal of Refractory Metals and Hard Materials, 117, 106384.
27. Bergmueller, S., Scheiber, J., Kaserer, L., & Leichtfried, G. (2023). Enhancing equiaxed grain formation in a high-alloy tool steel using dual laser powder bed fusion. Additive Manufacturing, 74, 103727.
28. Mair, Dominik; Renzler, Michael; Kovar, Stanislav; Martinek, Tomas; Kadavy, Tomas; Bergmueller, Simon; Horn, Andrada; Braun, Jakob; Kaserer, Lukas (2023): Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion. In: IEEE Access
11, S. 121914 - 121923
29. Käfer, M., Dohnal, F., Goettgens, V., Stajkovic, J., Brunner, M., & Leichtfried, G. (2024). Experimental verification of additively manufactured stacked multi-wedge acoustic black holes in beams for low frequency. Mechanical Systems and Signal Processing, 208, 111065.
30. Goettgens, V. S., Weber, L., Braun, J., Kaserer, L., Letofsky-Papst, I., Mitsche, S., ... & Leichtfried, G. (2024). Microstructure and Mechanical Properties of Ti-6Al-4V In Situ Alloyed with 3 wt% Cr by Laser Powder Bed Fusion. Metals, 14(6), 715.
31. Schimbäck, D., Kaserer, L., Mair, P., Mohebbi, M. S., Staron, P., Maier-Kiener, V., ... & Pogatscher, S. (2024). Advancements in metal additive manufacturing: In-situ heat treatment of aluminium alloys during the laser powder bed fusion process. Materials Science and Engineering: A, 905, 146102.
32. Bakker, M., Kaserer, L., & Maassen, N. Designing and Simulating an Additive Manufacturable Liquid Metal Heat Pipe for Future Fusion Application. Available at SSRN 4809344.