S5-HT SOFC Stack Prüfstand

Technische Universität Graz (TU Graz)

Graz | Website

Großgerät

Kurzbeschreibung

Der Brennstoffzellenprüfstand ist geeignet zur Untersuchung von Hochtemperaturbrennstoffzellen- und Elektrolysesystemen von einigen Watts bis 3 kW. Dieser Prüfstand hat folgende Spezifikationen:
- Elektronisch geregelter Haubenofen mit 4 optischen Zugängen in Größe je 10cm x 10cm
- 4 Massendurchflussregler: Wasserstoff, Stickstoff, Formiergas und Luft
- Leistungsfähige Messwerterfassungs- und Auswertesysteme mit der erforderlichen Software
- Elektronische Last bis 3 kW
- Netzteil bis 6 kW
- Strom- und Spannungsüberwachung
- Dampfgenerator
- Temperaturüberwachung
- Adapterplatte für Stacks

Ansprechperson

Ass.Prof. DI Dr.techn. Vanja Subotic

Research Services

- Charakterisierung von Hochtemperaturbrennstoffzellen betrieben mit Wasserstoff, kohlenstoffhaltigen Brenngasen oder Ammoniak und Optimierung deren Betriebs
- Charakterisierung von Hochtemperaturelektrolyseuren (Wasserdampf-, Co- und CO2-Elektrolyse) und Optimierung deren Betriebs
- Langzeituntersuchungen von SOFC und SOEC Einzelzellen und Stacks
- Durchführung von beschleunigten Alterungstests
- Auswertung und Verarbeitung von Mess- und Studienergebnissen

Methoden & Expertise zur Forschungsinfrastruktur

- Detailierte orts- und zeitaufgelöste Analyse von unterschiedlichen Vorgängen in SOFC und SOEC (z.B. interne Reformierung, Ladungsaustausch, Degradationseffekte, usw.)
- Optische Untersuchungen von unterschiedlichsten Vorgängen.
- Detaillierte elektrochemische Untersuchungen.
- Beschleunigte Alterungstests in welchen die Brennstoffzellen und Elektrolysezellen gezielt ausgewählten schädigenden Mechanismen ausgesetzt werden.
- Langzeituntersuchungen von Brennstoffzellen- und Elektrolyseprozessen.

Zuordnung zur Core Facility

Brennstoffzellenlabor

Ass.Prof. DI Dr.techn. Vanja Subotic
Institut für Wärmetechnik, Technische Universität Graz
+433168737319
vanja.subotic@tugraz.at
https://www.tugraz.at/institute/iwt/home/
Bitte um Kontaktaufnahme.
- Subotić, V., Baldinelli, A., Barelli, L., Scharler, R., Pongratz, G., Hochenauer, C., Anca-Couce, A.; Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behavior; (2019) Applied Energy, 256, art. no. 113904, DOI: 10.1016/j.apenergy.2019.113904
- Subotić, V., Pofahl, S., Lawlor, V., Menzler, N.H., Thaller, T., Hochenauer, C.; Online monitoring tools for SoH diagnostic and prognostic of remaining lifetime of reversible solid oxide cell (rSOC) systems (2019) Energy Procedia, 158, pp. 2329-2334. DOI: 10.1016/j.egypro.2019.01.271
- Subotić, V., Baldinelli, A., Barelli, L., Scharler, R., Hochenauer, C., Anca-Couce, A.; Optimization of an integrated biomass gasifier-fuel cell system: An experimental study on the cell response to process variations; (2019) Energy Procedia, 158, pp. 2052-2057. DOI: 10.1016/j.egypro.2019.01.473
- Subotić, V., Thaller, T., Preininger, M., Pongratz, G., Stoeckl, B., Schroettner, H., Hochenauer, C.; Numerical and experimental study on operation of reversible solid oxide fuel cells; (2019) ECS Transactions, 91 (1), pp. 2661-2667. DOI: 10.1149/09101.2661ecst
- Stoeckl, B., Preininger, M., Subotić, V., Gaber, C., Seidl, M., Sommersacher, P., Schroettner, H., Hochenauer, C.; High utilization of humidified ammonia and methane in solid oxide fuel cells: An experimental study of performance and stability; (2019) Journal of the Electrochemical Society, 166 (12), pp. F774-F783. DOI: 10.1149/2.0781912jes
- Stoeckl, B., Preininger, M., Subotić, V., Schroettner, H., Sommersacher, P., Seidl, M., Megel, S., Hochenauer, C.; Ammonia as promising fuel for solid oxide fuel cells: Experimental analysis and performance evaluation; (2019) ECS Transactions, 91 (1), pp. 1601-1610. DOI: 10.1149/09101.1601ecst
- Subotić, V., Harter, P., Stoeckl, B., Preininger, M., Kusnezoff, M., Lawlor, V., Pofahl, S., Napporn, T.W., Megel, S., Schroettner, H., Hochenauer, C.; Fast fuel variation and identification of SOFC system changes using online health monitoring tools and fault diagnosis; (2019) ECS Transactions, 91 (1), pp. 753-759. DOI: 10.1149/09101.0753ecst
- Subotić, V., Schluckner, C., Stoeckl, B., Preininger, M., Lawlor, V., Pofahl, S., Schroettner, H., Hochenauer, C.; Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation; (2018) Energy Conversion and Management, 178, pp. 343-354. DOI: 10.1016/j.enconman.2018.10.022
- Subotić, V., Stoeckl, B., Lawlor, V., Strasser, J., Schroettner, H., Hochenauer, C.; Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches; (2018) Applied Energy, 222, pp. 748-761. DOI: 10.1016/j.apenergy.2018.03.182
- Preininger, M., Subotić, V., Stoeckl, B., Schauperl, R., Reichholf, D., Megel, S., Kusnezoff, M., Hochenauer, C.; Electrochemical characterization of a CFY-stack with planar electrolyte-supported solid oxide cells in rSOC operation; (2018) International Journal of Hydrogen Energy, 43 (27), pp. 12398-12412. DOI: 10.1016/j.ijhydene.2018.04.230
- Stoeckl, B., Subotić, V., Preininger, M., Schroettner, H., Hochenauer, C.; SOFC operation with carbon oxides: Experimental analysis of performance and degradation; (2018) Electrochimica Acta, 275, pp. 256-264. DOI: 10.1016/j.electacta.2018.04.036
- Stoeckl, B., Subotić, V., Reichholf, D., Schroettner, H., Hochenauer, C.; Extensive analysis of large planar SOFC: Operation with humidified methane and carbon monoxide to examine carbon deposition based degradation; (2017) Electrochimica Acta, 256, pp. 325-336. DOI: 10.1016/j.electacta.2017.09.026
- Preininger, M., Wurm, J., Subotić, V., Schauperl, R., Hochenauer, C.; Performance characterization of a solid oxide cell stack with chromium-based interconnects (CFY); (2017) International Journal of Hydrogen Energy, 42 (48), pp. 28653-28664. DOI: 10.1016/j.ijhydene.2017.10.007
- Subotic, V., Stoeckl, B., Schluckner, C., Pofahl, S., Lawlor, V., Schroettner, H., Hochenauer, C.; Development of cell-protecting methods for carbon-removal from porous Ni-YSZ anodes and regeneration of the cell performance; (2017) ECS Transactions, 78 (1), pp. 2441-2449. DOI: 10.1149/07801.2441ecst
- Subotic, V., Schluckner, C., Stoeckl, B., Reichholf, D., Lawlor, V., Pofahl, S., Schroettner, H., Hochenauer, C.; In-operando detection of carbon depositions and carbon formation predictions for industrial-sized SOFCs fueled with synthetic diesel reformate; (2017) ECS Transactions, 78 (1), pp. 2451-2460. DOI: 10.1149/07801.2451ecst
- Schluckner, C., Subotić, V., Lawlor, V., Hochenauer, C.; CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni–YSZ cermet anodes; (2017) International Journal of Hydrogen Energy, 42 (7), pp. 4434-4448. DOI: 10.1016/j.ijhydene.2016.11.162
- Subotić, V., Schluckner, C., Strasser, J., Lawlor, V., Mathe, J., Rechberger, J., Schroettner, H., Hochenauer, C.; In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition;(2016) Electrochimica Acta, 207, pp. 224-236. DOI: 10.1016/j.electacta.2016.05.025
oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition;(2016) Electrochimica Acta, 207, pp. 224-236. DOI: 10.1016/j.electacta.2016.05.025
- Subotić, V., Schluckner, C., Schroettner, H., Hochenauer, C.; Analysis of possibilities for carbon removal from porous anode of solid oxide fuel cells after different failure modes; (2016) Journal of Power Sources, 302, pp. 378-386. DOI: 10.1016/j.jpowsour.2015.10.071
- Subotić, V., Schluckner, C., Hochenauer, C.;An experimental and numerical study of performance of large planar ESC-SOFCs and experimental investigation of carbon depositions; (2016) Journal of the Energy Institute, 89 (1), pp. 121-137. DOI: 10.1016/j.joei.2015.01.004
- Schluckner, C., Subotić, V., Lawlor, V., Hochenauer, C.; Numerical SOFC anode catalyst occupation study: Internal reforming of carbonaceous fuel mixtures; (2016) Journal of the Electrochemical Society, 163 (7), pp. F761-F770. DOI: 10.1149/2.0061608jes
- Subotić, V., Schluckner, C., Stöckl, B., Lawlor, V., Schroettner, H., Hochenauer, C.; Strategy for carbon gasification from porous Ni-YSZ anodes of industrial-sized ASC-SOFCs and effects of carbon growth; (2016) Journal of the Electrochemical Society, 163 (14), pp. F1515-F1522. DOI: 10.1149/2.0521614jes
- Schluckner, C., Subotić, V., Lawlor, V., Hochenauer, C.; Carbon Deposition Simulation in Porous SOFC Anodes: A Detailed Numerical Analysis of Major Carbon Precursors; (2015) Journal of Fuel Cell Science and Technology, 12 (5), art. no. 051007,. DOI: 10.1115/1.4031862
- Schluckner, C., Subotić, V., Lawlor, V., Hochenauer, C.; Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part II: Detailed reforming chemistry and carbon deposition analysis; (2015) International Journal of Hydrogen Energy, 40 (34), pp. 10943-10959. DOI: 10.1016/j.ijhydene.2015.06.024
- Subotić, V., Schluckner, C., Mathe, J., Rechberger, J., Schroettner, H., Hochenauer, C.; Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate; (2015) Journal of Power Sources, 295, pp. 55-66. DOI: 10.1016/j.jpowsour.2015.06.133
- Schluckner, C., Subotić, V., Lawlor, V., Hochenauer, C.; Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: Creation of a base model for further carbon deposition modeling; (2014) International Journal of Hydrogen Energy, 39 (33), pp. 19102-19118. DOI: 10.1016/j.ijhydene.2014.09.108