Kurzbeschreibung
The equipment in the laboratory allows the realization of highly-reliable wireless machine-to-machine communication links. Wireless signal processing algorithms can be validated in real time on a software defined radio (SDR) platform.
The infrastructure includes
• multiple SDR transmitter and receiver for multiple-input multiple-output (MIMO) and for massive MIMO systems
• field programmable gate arrays (FPGA) computation units for high-speed signal processing
• rubidium clocks for accurate phase and time-synchronization between multiple SDR nodes
• antenna arrays to realize massive MIMO systems with distributed antenna groups
Ansprechperson
Priv.-Doz. Dipl.-Ing. Dr. tech. Thomas Zemen
Research Services
• Wireless channel measurements, characterization and real-time emulation
• Ultra-reliable low-latency wireless communications
• Indoor wireless positioning systems
• Real-time software defined radio algorithms
Methoden & Expertise zur Forschungsinfrastruktur
• Fast prototyping of highly reliable wireless machine-to-machine communication systems
• Channel sounding hardware for SISO, MIMO, multi-node and massive MIMO configurations
• Real time emulation of geometry based mobile communication channels between multiple moving nodes in non-stationary environments.
• Massive MIMO algorithm verification for highly mobile users (autonomous vehicles)
• Indoor localization methods
• mmWave system design and measurements
SCOTT, Secure Connected Trustable Things, https://scottproject.eu
Z. Xu, M. Hofer, and T. Zemen, IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5961 - 5973, July 2017
Measurement-based wideband analysis of dynamic multipath propagation in vehicular communication scenarios
K. Mahler, W. Keusgen, F. Tufvesson, T. Zemen, and G. Caire, IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 4657 - 4667, June 2017
Real-time channel emulation of a geometry-based stochastic channel model on a SDR platform
M. Hofer, Z. Xu, and T. Zemen, in IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, July 2017.