Kurzbeschreibung
Das Röntgendiffraktometer besteht aus einem Röntgengenerator, Röntgenoptik (Spiegelsystem), einer Cryo-Anlage und einem Röntgenflächenzähler. Der Röntgengenerator erzeugt mittels einer Kupfer-Drehanode Röntgenstrahlung (Cu Kα, 1.54 Å), die über ein Spiegelsystem weiter fokussiert und monochromatisiert wird. Die stickstoffbetriebene Kryoanlage erlaubt eine auf ein Grad genaue Temperatureinstellung von ca. 80 bis 300 Kelvin. Die imaging plate Technologie des Röntgendetektors erlaubt den Nachweis von Röntgendiffraktion bei extrem langen Zellachsen von bis zu 500 Å und eine Auflösung von besser als 1.5 Å.
Ansprechperson
Univ-Prof. Dr. Hans Brandstetter
Research Services
Röntgenstrukturanalyse von Makromolekülen (vornehmlich Proteinen und DNA)
Methoden & Expertise zur Forschungsinfrastruktur
Das Röntgendiffraktometer ist das apparative Herzstück zur molekularen Strukturaufklärung. Das vorliegende Gerät ist insbesondere für die Aufklärung biologisch relevanter Makromoleküle wie Proteine und DNA ausgelegt. Die Strukturaufklärung ist der Schlüssel für das mechanistische Verständnis dieser Moleküle. Konkrete Einsatzgebiete umfassen Proteine im Bereich der Immunologie, Allergie, Antigenprozessierung, Pathogen-Wirt-Wechselwirkung, Blutgerinnung und andere. Alle diese untersuchten Proteine spielen eine große Bedeutung bei gesundheitsrelevanten Themen. Die dadurch erzielten Strukturaufklärungen haben bereits mehrfach neue Entwicklungsmöglichkeiten in Diagnose und Therapie der jeweiligen Krankheitsgebiete eröffnet.
Zuordnung zur Forschungsinfrastruktur
Universität Innsbruck
Medizinische Universität Wien
Technische Universität München
Universität Antwerpen
Shire Bioscience Wien
Novo Nordisk Kopenhagen
Universidade de Lisboa
University of Massachusetts, Amherst
MPI Golm
Sanford-Burnham Institute La Jolla
Universität Bielefeld
Universität Köln
Helmholtz Forschungszentrum Jülich
Emory University, Medical School (USA)
MPI Martinsried
SALK, PMU
DKFZ Heidelberg
Universität Lund (Schweden)
Universidade Federal de Minas Gerais
2023
Elfriede Dall
FWF
https://www.fwf.ac.at/forschungsradar/10.55776/Y1469
International PhD Program "Immunity in Cancer and Allergy"
2009-2021
Huber Christian; Aberger Fritz, Brandstetter Johann, Duschl Albert, Ferreira Fatima, Gratz Iris, Greil Richard, Hartmann Tanja, Risch Angela, Wessler Silja
FWF
http://ica.sbg.ac.at
Kofaktor- und Substratabhängige Aktivierung des Gerinnungsfaktors IXa
01.07.2011-30.6.2014
Brandstetter Johann
FWF
Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars
01.10.2013-30.09.2018
Huber christian (Sprecher); Brandstetter Johann, Cabrele Chiara, Gadermaier Gabriele, Stutz Hanno
CD Forschungsgesellschaft, Sandoz, Thermo Fisher Scientific, bmWFJ
Funktionelle Prinzipien der Legumain-Macrocypin Interaktion
2019-2022
Elfriede Dall
FWF
Mechanismus des bakteriellen Kollagenabbaus
2019-2022
Esther Schönauer
FWF
2024
Jamil Serwanja, Alexander C. Wieland, Astrid Haubenhofer, Hans Brandstetter, Esther Schönauer
Proceedings of the National Academy of Sciences USA
https://doi.org/10.1073/pnas.2321002121
Fragment-Based Design, Synthesis, and Characterization of Aminoisoindole-Derived Furin Inhibitors
2024
Roman W. Lange, Konstantin Bloch, Miriam Ruth Heindl, Jan Wollenhaupt, Manfred S. Weiss, Hans Brandstetter, Gerhard Klebe, Franco H. Falcone, Eva Böttcher-Friebertshäuser, Sven O. Dahms, Torsten Steinmetzer
ChemMedChem
https://doi.org/10.1002/cmdc.202400057
Inhibitors of the Elastase LasB for the Treatment of Pseudomonas aeruginosa Lung Infections
2023
Jelena Konstantinović, Andreas M. Kany, Alaa Alhayek, Ahmed S. Abdelsamie, Asfandyar Sikandar, Katrin Voos, Yiwen Yao, Anastasia Andreas, Roya Shafiei, Brigitta Loretz, Esther Schönauer, Robert Bals, Hans Brandstetter, Rolf W. Hartmann, Christian Ducho, Claus-Michael Lehr, Christoph Beisswenger, Rolf Müller, Katharina Rox, Jörg Haupenthal, and Anna K.H. Hirsch
ACS Central Science
https://doi.org/10.1021/acscentsci.3c01102
Structural and functional studies of legumain–mycocypin complexes revealed a competitive, exosite-regulated mode of interaction
2022
T Elamin, NP Santos, P Briza, H Brandstetter, E Dall
Journal of Biological Chemistry 298 (10)
https://doi.org/10.1016/j.jbc.2022.102502
Discovery and Characterization of Synthesized and FDA-Approved Inhibitors of Clostridial and Bacillary Collagenases
2022
A Alhayek, AS Abdelsamie, E Schönauer, V Camberlein, E Hutterer, ..., H Brandstetter, A Hirsch
Journal of Medicinal Chemistry 65 (19), 12933-12955
https://doi.org/10.1021/acs.jmedchem.2c00785
Dichlorophenylpyridine-based molecules Inhibit furin through an induced-Fit mechanism
2022
SO Dahms, G Schnapp, M Winter, FH Büttner, M Schlepütz, C Gnamm, … & H Brandstetter
ACS chemical biology 17 (4), 816-821
https://doi.org/10.1021/acschembio.2c00103
The Peptide Ligase Activity of Human Legumain Depends on Fold Stabilization and Balanced Substrate Affinities
2021
Elfriede Dall, Vesna Stanojlovic, Fatih Demir, Peter Briza, Sven O Dahms, Pitter F Huesgen, Chiara Cabrele, Hans Brandstetter
ACS catalysis
https://doi.org/10.1021/acscatal.1c02057
Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain.
2015
Dall E, Fegg JC, Briza P, Brandstetter H.
Angwandte Chemie
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506564/
DOI: 10.1002/anie.201409135
Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation.
2015
Schubert M, Walczak MJ, Aebi M, Wider G.
Angewandte Chemie
http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201502093/abstract
DOI: 10.1002/anie.201502093
Stabilization of the Dimeric Birch Pollen Allergen Bet v 1 Impacts Its Immunological Properties
2014
Kofler S, Ackaert C, Samonig M, Asam C, Briza P, Horejs-Hoeck J, Cabrele C, Ferreira F, Duschl A, Huber C, Brandstetter H.
The Journal of Biological Chemistry
http://www.jbc.org/content/289/1/540.long
DOI: 10.1074/jbc.M113.518795
Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation.
2013
Dall E, Brandstetter H.
PNAS
http://www.pnas.org/content/110/27/10940.long
DOI: 10.1073/pnas.1300686110
Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis.
2011
Eckhard U, Schönauer E, Nüss D, Brandstetter H.
Nature Structural and Molecular Biology
http://www.nature.com/nsmb/journal/v18/n10/full/nsmb.2127.html
DOI: 10.1038/nsmb.2127
Molecular metamorphosis in polcalcin allergens by EF-hand rearrangements and domain swapping
2010
Magler I, Nüss D, Hauser M, Ferreira F, Brandstetter H.
The FEBS Journal
http://onlinelibrary.wiley.com/wol1/doi/10.1111/j.1742-4658.2010.07671.x/abstract
DOI: 10.1111/j.1742-4658.2010.07671.x
Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen
2016
Machado Y., Freier R., Scheiblhofer S., Thalhamer T., Mayr M., Briza P., Grutsch S., Ahammer L., Fuchs J.E., Wallnoefer H.G., Isakovic A., Kohlbauer V., Hinterholzer A., Steiner M., Danzer M., Horejs-Hoeck J., Ferreira F., Liedl K.R., Tollinger M., Lackner P., Johnson C.M., Brandstetter H., Thalhamer J. and Weiss R.
J Allergy Clin Immunol
http://www.sciencedirect.com/science/article/pii/S0091674915013664
10.1016/j.jaci.2015.09.026