Diffraction

University of Salzburg

Salzburg | Website

Core facility (CF)

Short Description

The core facility "diffraction" includes a Bruker D8 powder diffractometer (Cu-K (alpha) radiation) as well as a Bruker SMART APEX single-crystal diffractometer (Mo-K (alpha) radiation). Equipment and accessories for sample preparation (such as microscopes, grinders, stoves, etc.) complete the Core Facility.

The D8 system with automatic sample changer (45 positions) is routinely used in high-throughput analysis of polycrystalline powder samples and thin films at room temperature in chemical and geoscientific phase analysis. Equipped with high angular resolution and a fast detector system, the system is also widely used for the refinement and determination of crystal structures and their dependencies on chemical substitution and synthesis conditions at room temperature.

The single crystal diffractometer (Eulerian cradle system), equipped with a CCD SMART APEX detector and a cooling device, allows the precise determination of crystal structures (atomic coordinates, atomic displacement parameters, occupation factors) of single-crystals with sizes above 40 microns at temperatures between 300K and 100K.

The diffraction methods (here with X-ray radiation) represent a cornerstone of material and phase characterization in many disciplines such as solid-state chemistry and physics, materials chemistry, crystallography, geosciences, life sciences and materials science and the refinement of atomic crystal structures. Based on the crystal structure of a compound, the qualitative and quantitative phase determination of single and polycrystalline samples material is facilitated. An important further aspect is the investigation of the behavior of a nuclear structure as a function of state variables, such as temperature.

Contact Person

Prof. Dr. Simone Pokrant

Research Services

Qualitative and quantitative phase content determination of crystalline samples by Rietveld-Analysis
Determination of crystallite size and microstructure properties in nanocrystalline samples
Determination of phase transformations
Determination, refinement and analysis of crystal structures of single crystalline substances of any kind (organic, organometallic, inorganic) by three-dimensional diffraction on single crystals

Methods & Expertise for Research Infrastructure

The methodology of crystal structure analysis is based on the diffraction of suitable electro-magnetic radiation (X-ray or neutron radiation) on the periodic three-dimensional lattice of crystalline substances. Based on the observed interference (diffraction) patterns, it is possible to perform an identification of a phase, or to determine the atomic / molecular structure of a material to high precisions in more in-depth measurement and data evaluation.

X-ray diffractometry on polycrystalline materials is the standard method for the qualitative and quantitative determination of the phase content of powdered samples. It is a versatile, non-destructive method that can also provide detailed information on the atomic structure of both (i) naturally occurring and (ii) synthetic materials/ compounds. By using appropriate software, Rietveld refinements on the diffraction data can be carried out and allow a quantitative phase compositions determination. Additionally, crystal structures can be refined. Applications lie – among others - in the fields of phase identification, e.g. fly gas cleaning and filter residues, ceramics, paints, rocks, Archaeometry, sediments, and clay mineral analysis, as well as quantitative phase determination, e.g. for cement clinker, ores, or phase conversion in chemical reactions. With the available diffractometer also small angle measurements and measurements in transmission can be carried out.

Single-crystal X-ray diffractometry is used to determine atomic structures of crystalline substances. Typical applications are the structure determination of organic, organometallic, inorganic and mineralogical related crystals, the determination of the absolute configuration (enantiomorphism), the determination of structure - function relationships as a function of temperature (e.g. magnetic materials), as well as crystallographic ally more demanding problems, such as stacking disorders, twins, modulation and phase transitions (e.g. purely structural or coupled structural and magnetic / or ferroelectric transitions).

The application areas of the Core Facility are in the fields of X-ray structure analysis and the study of material changes through dynamic processes, e.g. chemical or temperature induced phase transitions and transformations.

Equipment

Prof. Dr. Simone Pokrant
Fachbereich Chemie und Physik der Materialien
0043 662 8044 6281
simone.pokrant@sbg.ac.at
https://www.uni-salzburg.at/index.php?id=205087&L=1
Please contact us via science.plus@sbg.ac.at, or contact the responsible person for this section, mentioned in the contact field
Department of Geography and Geology, University of Salzburg
Department of Biosciences, University of Salzburg
Montanuiversität Leoben
Department of Mineralogy and Crystallography, University of Vienna
Institute Chemistry and Technology of Materials, University of Technology Graz
Linz School of Education
Institute of Energy and Climate Research (IEK), Jülich Forschungszentrum
Department of Crystallography, RWTH Aachen
Research Neutron Source Heinz Maier-Leibnitz (FRM-II),Technical University of Munich
Landshut University of Applied Sciences
Institut Charles Gerhardt, University Montpellier
Dipartimento di Scienze, Universita Roma Tre
Universita degli Studi di Milano
Smart Materials
2018-2022
Hüsing N., Tscheligi M.
IWB EFRE

Li2+2xCo1-xGeO4 als Kathodenmaterial
2017-2019
Schoiber, J.
FWF

Intergranulare Bereiche in nanokristallinen Keramiken
2017 - 2020
Diwald, O.
FWF

Li-oxide garnet 'Li7La3Zr2O12' doped with Ga and Fe2+/3+: A fast ion conductor for use in solid state Li-ion batteries.
2013-2017
Amthauer G., Geiger C.
FWF

Li-hochleitende Keramiken für all-solid-state Batterien
2014-2017
Amthauer G.
FFG

Novel Pt-poor catalysts for the electrocatalytic O2 reduction based on modified, nanostructured metal oxides
2013-2016
Hüsing N., Behm R.J.
FWF/DFG

Synthese, Charakterisierung und technologische Fertigungsansätze für den Leichtbau 'n2m' (nano-to-macro)
2015-2018
Hüsing, N., Diwald, O., Musso, M., Bourret, G., Redhammer, G., Huber, O., Saage, H.
Interreg Österreich-Bayern

Geochemical and physical research within the LOREX-project II
2008 - 2010, 2013-2016
Amthauer, G.
FWF

Kristallstruktur und Eigenschaften von Valeriit
2007-2011
Redhammer, G.J.
FWF
Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-ray Diffraction
2019
C. Hiebl, D. Young, R. Wagner, H.M.R. Wilkening, G.J. Redhammer, D. Rettenwander
The Journal of Physical Chemistry C, 2019, 123(2), 1094-1098
https://pubs.acs.org/doi/10.1021/acs.jpcc.8b10694
10.1021/acs.jpcc.8b10694

Structural and spectrosopic characterization of the brownmillerite-type Ca2Fe2-xGaxO5 solid solution series
2018
Quirin E. Stahl, Günther J. Redhammer, Gerold Tippelt, Andreas Reyer
Physics and Chemistry of Minerals, 2018
https://link.springer.com/article/10.1007/s00269-018-1003-9
https://doi.org/10.1007/s00269-018-1003-9

3D Printing of Hierarchical Porous Silica and a-Quartz
2018
Florian Putz, Sebastian Scherer, Michael Ober, Roland Morak, Oskar Paris, Nicola Hüsing
Advanced Materials Technology, 2018, 1800060
https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201800060
https://doi.org/10.1002/admt.201800060

Structural and Raman spectroscopic characterization of pyroxene-type compounds in the CaCu1xZnxGe2O6 solid-solution series
2017
Günther J. Redhammer, Gerold Tippelt, Andreas Reyer, Reinhard Gratzl and Andreas Hiederer
Acta Crystallographica, 2017, B73, 419-431
http://scripts.iucr.org/cgi-bin/paper?S205252061700381X
https://doi.org/10.1107/S205252061700381X

Monolithic porous magnesium silicide
2017
Nastaran Hayati-Roodbari, Raphael J.F. Berger, Johannes Bernardi, Sahin Kinge, Nicola Hüsing, Michael S. Elsaesser,
Dalton Transaction, 2017, 46, 8855-8860.
https://pubs.rsc.org/en/content/articlehtml/2017/dt/c7dt00571g
https://DOI:10.1039/c7dt00571g

A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series
2017
G.J. Redhammer
Physics and Chemistry of Minerals, 2017, 44(9), 669-684
https://link.springer.com/article/10.1007/s00269-017-0892-3
10.1007/s00269-017-0892-3

Fast Li-Ion-Conducting Garnet-Related Li7-3x Fe x La3Zr2O12 with Uncommon I43d Structure
2016
R. Wagner, G.J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, G. Amthauer
Chemistry of Materials, 2016,
https://pubs.acs.org/doi/10.1021/acs.chemmater.6b02516
10.1021/acs.chemmater.6b02516

A single crystal X-ray and powder neutron diffraction study on NASICON-type Li 1+x Al x Ti 2−x (PO 4 ) 3 (0 ≤  x  ≤ 0.5) crystals: Implications on ionic conductivity
2016
G.J. Redhammer, D. Rettenwander, S. Pristat, E. Dashjav, C.M.N. Kumar, D. Topa, F. Tietz
Solid Sate Science, 2016, 60, 99-107
https://www.sciencedirect.com/science/article/pii/S1293255816301017
10.1016/j.solidstatesciences.2016.08.011

Synthesis and electrocatalytic performance of spherical core-shell tantalum (oxy)nitride@nitrided carbon composites in the oxygen reduction reaction
2017
M. Wassner, M. Eckardt, C. Gebauer, G. R. Bourret, N. Hüsing, R. J. Behm
Electrochimica Acta, 2017, 227, 367-381
https://www.sciencedirect.com/science/article/pii/S0013468616327049
DOI:10.1016/j.electacta.2016.12.145

Synthesis, crystal structures and blue emission of zinc(II) halide complexes of 1-alkyl-imidazole and (–)-nicotine
2016
E. Hobbollahi, B. Veselkova, M. List. G. Redhammer, U. Monkowius
Zeitschrift für Naturforschung B, 2016, 71(12), 1268-1277
https://www.degruyter.com/view/j/znb.2016.71.issue-12/znb-2016-0168/znb-2016-0168.xml
10.1515/znb-2016-0168

Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes
2016
D. Rettenwander, G.J. Redhammer, F. Preishuber-Pflugl, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M.M. Doeff, M. Wilkening, J. Fleig, G. Amthauer, G.
Chemistry of Materials, 2016, 28(7), 2384-2392
https://pubs.acs.org/doi/10.1021/acs.chemmater.6b00579
10.1021/acs.chemmater.6b00579

Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4+ by Mo6+
2015
Rettenwander, D.; Welzl, A.; Cheng, L.; Fleig, J.; Musso, M.; Suard, E.; Doeff, M.M.; Redhammer, G.J.; Amthauer, G.
Inorganic Chemistry, 2015, 21, 10440-10449
https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01895
DOI: 10.1021/acs.inorgchem.5b01895

Defect and Surface Area Control in Hydrothermally Synthesized LiMn0.8Fe0.2PO4 Using a Phosphate Based Structure Directing Agent
2015
Schoiber, J.; Tippelt, G.; Redhammer, G.J.; Yada, C.; Dolotko, O.; Berger, R.J.F., Husing, N.
CRYSTAL GROWTH & DESIGN, 2015, 15(9), 4213-4218
https://pubs.acs.org/doi/10.1021/acs.cgd.5b00324
DOI: 10.1021/acs.cgd.5b00324

Thin water films and magnesium hydroxide fiber growth
2015
Gheisi, A.; Sternig, A.; Redhammer, G.J.; Diwald, O.
RSC ADVANCES, 2015, 5(100), 82564-82569
https://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/c5ra18202f
DOI: 10.1039/c5ra18202f

A Two-Step Synthesis for Li2CoPO4F as High-Voltage Cathode Material
2015
Schoiber, J.; Berger, R.J.F.; Yada, C.; Miki, H.; Husing, N.
Journal of the Electrochemical Socienty, 2015, 162(14), A2679-A2683
http://jes.ecsdl.org/content/162/14/A2679.full
doi: 10.1149/2.0331514jes

Structural and magnetic phase transitions in the synthetic clinopyroxene LiCrGe2O6: a neutron diffraction study between 0.5 and 1473 K
2015
G.J. Redhammer, A. Senyshyn, G. Tippelt, S. Prinz, G. Roth
Physics and Chemistry of Minerals, 2015, 42(6), 41-507
https://link.springer.com/article/10.1007%2Fs00269-015-0738-9
10.1007/s00269-015-0738-9

Giant rockslides from the inside
2014
J.T. Weidinger, O.Korup, H. Munack, U. Altenberger, S.A. Stuart, G. Tippelt, W. Lottermoser
Earth and Planetary Science Letters, 2014, 389, 62-73
https://www.sciencedirect.com/science/article/pii/S0012821X13007231
10.1016/j.epsl.2013.12.017

Crystal and magnetic spin structure of Germanium-Hedenbergite, CaFeGe2O6, and a comparison with other magnetic/magnetoelectric/multiferroic pyroxenes
2013
G.J. Redhammer, G. Roth, A. Senyshyn, G. Tippelt, C. Pietzonka
Zeitschrift für Kristallographie, 2013, 228(3), 140-150
https://www.degruyter.com/view/j/zkri.2013.228.issue-3/zkri.2013.1586/zkri.2013.1586.xml
10.1524/zkri.2013.1586

Synthetic LiAlGe2O6: The first pyroxene with P2(1)/n symmetry
2012
G.J. Redhammer, F. Nestola, R. Miletich
American Mineralogist, 2012, 97(7), 1213-1218
https://www.degruyter.com/view/j/ammin.2012.97.issue-7/am.2012.4099/am.2012.4099.xml
10.2138/am.2012.4099

The crystal structure of gustavite, PbAgBi3S6 Analysis of twinning and polytypism using the OD approach
2011
E. Makovichy, D. Topa
European Journal of Mineralogy, 2011, 23(4), 537-550
https://www.ingentaconnect.com/content/schweiz/ejm/2011/00000023/00000004/art00005%3bjsessionid=96qcyh2636xq.x-ic-live-02
10.1127/0935-1221/2011/0023-2114

Thermal expansion and high-temperature P2(1)/c-C2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)(2)O6
2010
G.J. Redhammer, F. Camara, M. Alvaro, F. Fabrizio, G. Tippelt, S. Prinz, J. Simons, Roth, G., G. Amthauer
Physics and Chemistry of Minerals, 2010, 37(10), 685-704
https://link.springer.com/article/10.1007%2Fs00269-010-0368-1
10.1007/s00269-010-0368-1