Short Description
The Raman spectrometer MonoVista CRS+ from the company S&I (Acton spectrometer with Princeton Instruments CCD camera) allows for the Raman spectroscopic characterization of both macroscopic samples and microscopic samples of inorganic or organic nature.
The Raman spectroscopic measurements can be performed polarization-dependent with regard both to excitation light and scattered light. The available laser wavelengths for excitation of the samples are 355 nm, 532 nm and 785 nm.
In addition to the confocal Raman microscopy, atomic force microscopy (AFM) can also be carried out on microscopically structured samples. In the coming years the AFM system will be expanded so that Tip Enhanced Raman Spectroscopy (TERS) will also be available.
Contact Person
Prof. Dr. Bodo Wilts
Research Services
Raman spectroscopic measurements of microscopic and macroscopic specimens (excitation of the samples with laser radiation at 785 nm, 532 nm and 355 nm)
Methods & Expertise for Research Infrastructure
Raman spectroscopy is used for the characterization and analysis of solid, liquid and gaseous samples (both organic and inorganic) within the fields of physics, chemistry, materials science, biosciences and forensics. The samples can usually be examined non-destructively.
The information obtained by Raman spectroscopy is based on the vibrations of atoms bound within molecules or crystal lattices, whereby these vibrations can be influenced by intramolecular and intermolecular interactions, as well as by external parameters, e.g. the thermodynamic state (temperature, pressure, concentration).
The spectra show, on the one hand, characteristic frequencies, so-called group frequencies of functional groups within molecules, on the other hand a fingerprint region, which is characteristic of the investigated molecule and is used to identify substances.
M. Musso and K.L. Oehme, Raman Spectroscopy, in Lasers in Chemistry: Probing and Influencing Matter, M. Lackner (Ed.), Wiley-VCH, pp. 531-591 (2008)
Allocation to research infrastructure
Department of Ecology and Evolution, University of Salzburg
Institute of Physics, University of Graz
Fachhochschule Salzburg, Campus Kuchl (wood technology)
Elettra Sincrotrone Trieste, Italy
Istituto per i Processi Chimico-Fisici, CNR Messina, Italy
Department of Chemistry, Shizuoka University, Japan
Stratec Consumables GmbH, Anif
2019-2022
Musso M., Vaccari L., Schnabel T.
European Regional Development Fund, Interreg Italien-Österreich 2014-2020; Elettra Synchrotron Trieste, Fachhoschule Salzburg, Area Science Park Trieste, Universität Salzburg, ITG Salzburg, t2i
https://www.incima4.eu/de/home/
ITAT1023 InCIMa: Smart Characterization of Smart Materials
2017-2019
Vaccari L., Rossi B., Tromba G., Tondi G., Musso M., Bourret G.,
Interreg Italien Österreich 2014-2020 (Elettra Sinctrotrone Trieste, Fachhochschule Salzburg, Universität Salzburg)http://www.elettra.eu/Prj/InCIMa/
AB 97 Technologie und Forschungsplattform "Hybrid Materials": TFP-HyMat
2016-2018
Pammer P., Fuchs E., Musso M., Hüsing N., Petutschnigg A.
Interreg Österreich-Bayern 2014-2020 (wood kplus, Universität Passau, Fachhochschule Salzburg, Universität Salzburg)
http://www.interreg-bayaut.net/projekte/liste-der-vorhaben/projektzusammenfassung-tfp-hymat/
AB 29 Synthese, Charakterisierung und technologische Fertigungsansätze für den Leichtbau 'n2m' (nano-to-macro)
2015-2018
Hüsing, N.; Diwald, O.; Musso, M.; Bourret, G.; Redhammer, G.; Huber, O.; Saage, H.
Interreg Österreich-Bayern 2014- 2020 (Universität Salzburg, Hochschule Landshut)
http://www.interreg-bayaut.net/projekte/liste-der-vorhaben/projektzusammenfassung-ab29/
Applications of confocal Raman spectroscopy and THz-Raman spectroscopy in function of temperature for phase transition studies
2015-2018
Musso M., Bertoldo Menezes B.
Science without Borders Mobiliyt Program, sponsored by CAPES Foundation and Ministry of Education of Brasil http://www.capes.gov.br/
http://www.cienciasemfronteiras.gov.br/web/csf-eng/
Li-oxide garnet 'Li7La3Zr2O12' doped with Ga and Fe2+/3+: A fast ion conductor for use in solid state Li-ion batteries.
2013-2016
Amthauer G.
FWF
https://pf.fwf.ac.at/de/wissenschaft-konkret/project-finder/29815
https://pf.fwf.ac.at/project_pdfs/pdf_abstracts/p25702d.pdf
2021
Francesco D'Amico, Maurizio E. Musso, Raphael J.F. Berger, Nicola Cefarin, Giovanni Birarda, Gianluca Tondi, Durval Bertoldo Menezes, Andreas Reyer, Letizia Scarabattoli, Thomas Sepperer, Thomas Schnabel, Lisa Vaccari
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
https://www.sciencedirect.com/science/article/pii/S1386142521006673?via%3Dihub
ISSN: 1386-1425
https://doi.org/10.1016/j.saa.2021.120090
Synchrotron-based UV resonance Raman scattering for investigating ionic liquid-water solutions
2019
C. Bottari, B. Rossi, A. Mele, A. Damin, S. Bordiga, M. Musso, A. Gessini, C. Masciovecchio
Condensed Matter Physics
http://www.icmp.lviv.ua/journal/zbirnyk.100/43301/abstract.html
ISSN: 2224-9079
https://doi.org/10.5488/CMP.22.43301
Introduction to Terahertz Raman spectroscopy
2018
Bertoldo Menezes D., Reyer A., Yüksel A. ,Bertoldo Oliveira B., Musso M.
Spectroscopy Letters
https://www.tandfonline.com/doi/full/10.1080/00387010.2018.1501704
ISSN: 1532-2289
https://doi.org/10.1080/00387010.2018.1501704
Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy
2018
Bertoldo Menezes D., Reyer A., Musso M.
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, Volume 190, 5 February 2018, Pages 433-441
https://doi.org/10.1016/j.saa.2017.09.055
ISSN: 13861425
DOI: 10.1016/j.saa.2017.09.055
Raman spectroscopic investigation of tannin-furanic rigid foams
2016
Reyer A., Tondi G., Berger R.J.F., Petutschnigg A., Musso M.,
Vibrational Spectroscopy, Volume 84, 1 May 2016, Pages 58-66
https://doi.org/10.1016/j.vibspec.2016.03.005
ISSN: 09242031
DOI: 10.1016/j.vibspec.2016.03.005