University of Salzburg

Salzburg | Website

Core facility (CF)

Short Description

The method pool of the spectroscopic methods in the core facility spectroscopy is an important pillar for the characterization of solid and liquid sample systems, and complementary to diffraction methods and to different imaging methods.

The core facility spectroscopy consists, among other things, of several Raman spectrometers and FT-IR spectrometers for studies by means of vibrational spectroscopy, of a photoluminescence spectrometer system for the qualitative and quantitative investigation of various luminescence (fluorescence / phosphorescence) phenomena, and of an EPR spectrometer for electron paramagnetic resonance spectroscopy.

The spectroscopic methods used allow the investigation of both macroscopic and microscopic samples (solids, liquids, gases, both inorganic and organic). Depending on the spectroscopic method used, the temperature of the samples can be set at temperatures between -180 ° C and 300 ° C using cryostats or thermostats.

The infrared spectrometers can be used in the FIR, MIR and NIR spectral range and are equipped with an ATR unit. In addition, confocal Raman microscopy measurements are possible in combination with atomic force microscopy.

The photoluminescence spectrometer system FLS980 (Edinburgh Instruments) is based on a fully automatic main unit for the UV-Vis-NIR range and a steady state mode operation. It is modular in design and due to its large sample chamber with 6-axis access it is particularly flexible for sample systems of various types. Luminescence processes in the range between 1 μs and 10 seconds can be monitored using a multi-channel technique. A double monochromator system is used for scattered-light-suppression and allows a particularly reliable examination of particle powders and other highly scattering sample systems.

Contact Person

Prof. Dipl.-Ing. Dr. Maurizio Musso

Research Services

Creation of spectroscopic property data of fluid and solid sample systems
Spectroscopic material characterization
Raman spectroscopic measurements of microscopic and macroscopic samples
Defect characterization in solids, charge separation processes in photocatalysts and other photoactive materials
Determination of radicals in organic and inorganic sample systems

Methods & Expertise for Research Infrastructure

Vibrational spectroscopy (Raman spectroscopy and infrared spectroscopy as mutually complementary spectroscopic techniques in the visible and infrared spectral range) is based on the spectroscopic investigation of vibrations of atoms bound within molecules or crystal lattices, and is used for the characterization and analysis of solid, liquid and gaseous samples (both organic and inorganic) within the disciplines of physics, chemistry, materials science, biosciences and forensics. The samples can usually be examined non-destructively.

Photoluminescence spectroscopy is a particularly sensitive method for investigating the electronic properties of molecules in different aggregate states. In addition, this method is suitable for investigating defect-related electronic transitions in semiconductors and isolators. The expertise and experimental equipment available in CF spectroscopy is available for the qualitative and quantitative investigation of various luminescence (fluorescence / phosphorescence) phenomena.

The electron paramagnetic resonance (EPR) spectroscopy belongs - as the related NMR spectroscopy - to the group of the magnetic resonance spectroscopies. It investigates the behavior of substances with unpaired electrons in an external magnetic field. By means of EPR spectroscopy, organic and inorganic radicals, transition metal compounds and defects in the solid, liquid and gaseous state can therefore be investigated.

M. Musso and K.L. Oehme, Raman Spectroscopy, in Lasers in Chemistry: Probing and Influencing Matter, M. Lackner (Ed.), Wiley-VCH, pp. 531-591 (2008)

T. Berger and O. Diwald, Defects in Oxide Particle Systems, , in “Defects on Oxide Surfaces” edited by J. Jupille, G. Thornton, Springer Series on Surface Science, Vol 58, Pages 273-301 (2015)

T. Berger and O. Diwald, Traps and Interfaces in Photocatalysis: Model Studies on TiO2 Particle Systems, in Photocatalysis Fundamentals and Perspectives, RSC Energy & Env. Series No. 14,: ed. Jenny Schneider, Detlef Bahnemann, et al., p 185-215, in press, © The Royal Society of Chemistry (2016)


Prof. Dipl.-Ing. Dr. Maurizio Musso
Fachbereich Chemie und Physik der Materialien
0043 662 8044 6252
Please contact the University of Salzburg (science_plus@sbg.ac.at) or the responsible contact person for this section mentioned in the contact field.
Department of Molecular Biology, University of Salzburg
Department of Ecology and Evolution, University of Salzburg
Institute of Physics, University of Graz
Fachhochschule Salzburg, Campus Kuchl (wood technology)
Elettra Synchrotron Trieste, Italy
Istituto per i Processi Chimico-Fisici, CNR Messina, Italy
Department of Chemistry, Shizuoka University, Japan Stratec Consumables GmbH, Anif
VOEST Raman FTIR Messungen
Musso M.
voestalpine Stahl Linz

Untersuchungen von 3-dimensionalen Polymerstrukturen mit Mikrometergenauigkeit
Musso M.

AB 97 Technologie und Forschungsplattform "Hybrid Materials": TFP-HyMat
Musso M., Hüsing N.
Interreg Österreich-Bayern 2014-2020

Synthese, Charakterisierung und technologische Fertigungsansätze für den Leichtbau 'n2m' (nano-to-macro)
Hüsing N., Diwald O., Musso M., Bourret G., Redhammer G., Huber O., Saage H.
Interreg Österreich-Bayern 2014- 2020

Nanostrukturen in molekularen Flüssigkeitssystemen bzw. Analysis of nanometer-scale structures in condensed-phase systems using Intermolecular resonant vibrational interactions
Musso M., Torii H., Giorgini M.G.
Fonds zur Förderung der Wissenschaftlichen Forschung FWF

Applications of confocal Raman spectroscopy and THz-Raman spectroscopy in function of temperature for phase transition studies
Musso M., Bertoldo Menezes B.
Science without Borders Mobiliyt Program, sponsored by CAPES Foundation and Ministry of Education of Brasil
Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7-2xLa3Zr2-xMoxO12 (x = 0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4+ by Mo6+
Rettenwander D., Welzl A., Cheng L., Fleig J., Musso M., Suard E., Doeff M.M., Redhammer G.J., Amthauer G.
Inorganic Chemistry
ISSN: 00201669
DOI: 10.1021/acs.inorgchem.5b01895

A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy
Charwat-Pessler J., Musso M., Petutschnigg A., Entacher K., Plank B., Wernersson E., Tangl S., Schuller-Götzburg P.
ISSN: 19961944
DOI: 10.3390/ma8073831

Univariate and multivariate analysis of tannin-impregnated wood species using vibrational spectroscopy
Schnabel T., Musso M., Tondi G.
Applied Spectroscopy
ISSN: 19433530
DOI: 10.1366/13-07181

Improving CT image analysis of augmented bone with Raman spectroscopy
Charwat-Pessler J., Musso M., Entacher K., Plank B., Schuller-Götzburg P., Tangl S., Petutschnigg A.
Journal of Applied Mathematics
ISSN: 1110757X
DOI: 10.1155/2013/271459

Structural analysis of wood-leather panels by Raman spectroscopy
Grünewald T., Ostrowski S., Petutschnigg A., Musso M., Wieland S.
ISSN: 19302126

Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy
Gamsjäger S., Baranska M., Schulz H., Heiselmayer P., Musso M.
Journal of Raman Spectroscopy
ISSN: 03770486
DOI: 10.1002/jrs.2860

Polarization-dependent Raman characterization of Stibnite (Sb2S3)
Sereni P., Musso M., Knoll P., Blaha P., Schwarz K., Schmidt G.
AIP Conference Proceedings
ISSN: 0094243X ISBN: 978-073540818-0
DOI: 10.1063/1.3482339

Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples
Fendrihan S., Musso M., Stan-Lotter H.
Journal of Raman Spectroscopy
ISSN: 03770486
DOI: 10.1002/jrs.2357

The effect of microscopic inhomogeneities in acetone/methanol binary liquid mixtures observed through the Raman spectroscopic noncoincidence effect
Musso M., Giorgini M.G., Torii H.
Journal of Molecular Liquids
ISSN: 01677322
DOI: 10.1016/j.molliq.2008.08.006

Raman Spectroscopy, in Lasers in Chemistry: Probing and Influencing Matter
M. Musso and K.L. Oehme
M. Lackner (Ed.), Wiley-VCH, pp. 531-591

The Raman non-coincidence effect of the 12C=O stretching mode of liquid acetone in chemical and in isotopic mixtures
Musso M., Giorgini M.G., Torii H., Dorka R., Schiel D., Asenbaum A., Keutel D., Oehme K.-L.
Journal of Molecular Liquids
ISSN: 01677322
DOI: 10.1016/j.molliq.2005.11.003

Noncoincidence effect of vibrational bands of methanol/CCl4 mixtures and its relation with concentration-dependent liquid structures
Musso M., Torii H., Ottaviani P., Asenbaum A., Giorgini M.G.
Journal of Physical Chemistry A
ISSN: 10895639
DOI: 10.1021/jp021440a

Isotropic Raman line shapes near gas-liquid critical points: The shift, width, and asymmetry of coupled and uncoupled states of fluid nitrogen
Musso M., Matthai F., Keutel D., Oehme K.-L.
Journal of Chemical Physics
ISSN: 00219606
DOI: 10.1063/1.1468885