University of Natural Resources and Life Sciences Vienna (BOKU)
Tulln an der Donau | Website
Short Description
The BOKU Core Facility Analysis of Lignocellulosics (ALICE) offers method development and state-of-the-art chromatographic, spectroscopic and chemical analysis for the advanced characterization of lignocellulose and various biorefinery products.
Contact Person
Ivan Sumerskii
Research Services
Cellulose analysis
• Molar mass distribution of celluloses by SEC-MALLS;
• Carbonyl group profiles of celluloses (“CCOA method”); Carboxyl group profiles of celluloses (“FDAM method”);
• Cellulose cystallinity and allomorphs (solid-state nuclear magnetic resonance (NMR) spectroscopy);
• Hemicellulose content and monosaccharide composition (methanolysis / total hydrolysis);
• Degree of substitution in cellulose derivatives (solid-state and solution NMR spectroscopy).
Lignin Analysis:
• Isolation and purification of technical lignins by precipitation, XAD adsorption or ultrafiltration methods;
• Functional group analysis (methoxy, ethoxy and other alkoxy groups, hydroxy and carboxy groups, sulfonic acid groups) by headspace isotope-dilution GC-MS method, various NMR methods or NIR/IR/chemometrics;
• Molar mass distribution by SEC-MALLS, advanced polymer chromatography (APC) or asymmetric flow field-flow fractionation;
• Determination of carbohydrate components by methanolysis or HPTLC methods;
• Characterisation linkages by one- and two-dimensional NMR or quantitative 13C NMR;
• Characterisation of lignin by thermogravimetry (TGA) and differential scanning
calorimetry (DSC).
Content and characterisation of extractives:
• Extraction of lipophilic compounds / secondary metabolites by means of accelerated solvent extraction or supercritical CO2 fluid extraction (SFE);
• Separation and analysis of lipophilic extractives by supercritical fluid chromatography UPC2 and GC-MS/FID or q-ToF-MS.
Methods & Expertise for Research Infrastructure
A largely unique combination of methods is available for the analysis of celluloses, covering the entire range of cellulosic materials, from pulp and paper, via nanostructured celluloses and cellulosic fibres, to textiles, cellulose derivatives and historical cellulosic objects. Determination of molar mass distribution, profiles of oxidized groups (carbonyls and carboxyls) in relation to the molar mass distribution, characterization of cellulose allomorphs and crystallinity, the analysis of hemicellulosic components, thermal stability and rapid screening by means of one of the largest cellulose NIR/IR databases, is just a short list of offered methods.
Lignins analyses are performed by several spectroscopic, chromatographic and wet chemical methods, which in combination by far exceed the information provided by conventional or individual analytical techniques. Native lignins, near-native lignins (e.g., milled-wood lignin) and all types of technical lignins (Kraft, lignosulfonate, organosolv, biorefinery lignins) are processed. Based on an extensive lignin database, fast methods by NIR/IR/chemometrics are available.
In the field of chemistry of renewable resources, separation techniques and extractions play a special role, both for fractionation and purification, as well as for the extraction of special substances and for pure preparations. In this area, the extraction of celluloses for the determination of secondary constituents, such as hemicelluloses, as well as the separation and purification of technical lignins from the process matrices are performed. Besides conventional approaches, ALICE core facility offers the most advanced techniques, such as supercritical CO2 fluid extraction and accelerated solvent extraction. If required, supercritical extraction can be combined with supercritical chromatographic separation and identification by means of high class quadrupole time-of-flight mass spectrometry.
EQUIPMENT
- Further services include advanced data interpretation as well as professional training sessions.
- Wyatt Technology SEC-MALLS(488)-RI-FL
- Wyatt Technology SEC-MALLS(785)-RI-UV
- Wyatt Technology AF4-Eclipse®
- Wyatt DLS Dynapro® Nanostar ®
- Waters Aquity® APC
- Agilent HS 7697A-coupled to 6890N GC and 5975B MSD
- Thermo Scientific™ LTQ XL™ ion trap mass spectrometer
- Waters ACQUITY UPC2®
- Waters QTof™-MS Xevo® G2
- NMR Spectrometer Bruker Avance III™ HD 400 MHz (Solid State)
- RETSCH Cryomill
- scCO2 extraction unit
- Climate chamber
Equipment
Dissolution behaviour of different celluloses, 2011 HENNIGES, U.; KOSTIC, M.; BORGARDS, A.; ROSENAU, T.; POTTHAST, A. Biomacromolecules, 12(4), https://doi.org/10.1021/bm101555q
Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system, 2011 PATEL, I.; LUDWIG, R.; HALTRICH, D.; ROSENAU, T.; POTTHAST, A., Holzforschung, 65(4), https://doi.org/10.1515/hf.2011.035
Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation, 2012 HENNIGES, U.; OKUBAYASHI, S.; ROSENAU, T.; POTTHAST, A. Biomacromolecules, 13(12), https://doi.org/10.1021/bm3014457
Dissolution of rayon fibres for size exclusion chromatography: a challenge, 2014 SILLER, M.; AHN. K.; PIRCHER, N.; ROSENAU, T.; POTTHAST, A. Cellulose, 21(5), https://doi.org/10.1007/s10570-014-0356-6
Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation 2015 SULAEVA, I.; KLINGER, K.-M.; AMER, H.; HENNIGES, U.; ROSENAU, T.; POTTHAST, A.
Cellulose, 22(6), https://doi.org/10.1007/s10570-015-0769-x
Insights into degradation pathways of oxidized anhydroglucose units in cellulose by -alkoxy-elimination – a combined theoretical and experimental approach 2018 HOSOYA, T.; BACHER, M.; POTTHAST, A.; ELDER, T.; ROSENAU, T. Cellulose, 25(7), https://doi.org/10.1007/s10570-018-1835-y
A matrix-resistant HPTLC method to quantify monosaccharides in wood-based lignocellulose biorefinery streams 2018 OBERLERCHNER, J. T.; BÖHMDORFER, S.; ROSENAU, T.; POTTHAST, A. Holzforschung, 72(8), https://doi.org/10.1515/hf-2017-0170
Yellowing and brightness reversion of celluloses: CO or COOH, who is the culprit? 2019 AHN, K.; ZACCARON, S.; ZWIRCHMAYR, N. S.; HETTEGGER, H.; HOFINGER, H.; BACHER, M.; HENNIGES, U.; HOSOYA, T.; POTTHAST, A.; ROSENAU, T. Cellulose, 26, https://doi.org/10.1007/s10570-018-2200-x
Resource-saving production of dialdehyde cellulose: Optimization of the process at high-consistency 2019 LUCIA, A.; VAN HERWIJNEN, H. W. G.; OBERLERCHNER, J. T.; ROSENAU, T.; BEAUMOUNT, M. ChemSusChem, 12(20), https://doi.org/10.1002/cssc.201901885
2D Assignment and Quantitative Analysis of Cellulose and Oxidized Celluloses using Solution-State NMR Spectroscopy 2020 KOSO, T.; DEL CERRO, R. D.; HEIKKINEN, S.; NYPELÖ, T.; BUFFIERE, J.; PEREA-BUCETA, J.; POTTHAST, A.; ROSENAU, T.; HEIKKINEN, H.; MAAHEIMO, H.; ISOGAI, A.; KILPELÄINEN, I.; KING, A. Cellulose, https://doi.org/10.1007/s10570-020-03317-0
LIGNIN
Characterization of technical lignins by NMR spectroscopy: optimization of functional group analysis by 31P NMR spectroscopy 2015 KORNTNER, P.; SUMERSKII, I.; BACHER, M.; ROSENAU, T.; POTTHAST, A. Holzforschung, 69(6), https://doi.org/10.1515/hf-2014-0281
Fast track for quantitative isolation of lignosulfonates from spent sulfite liquors 2015 SUMERSKII, I.; KORNTNER,P.; ZINOVYEV, G.; ROSENAU, T.; POTTHAST, A. RSC Advances, 5(112), https://doi.org/10.1039/C5RA14080C
Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin 2017 ZINOVYEV, G.; SUMERSKIJ, I.; KORNTNER, P.; SULAEVA, I.; ROSENAU, T.; POTTHAST A. J. Wood Chem. Technol., 37(3), https://doi.org/10.1080/02773813.2016.1253103
Fast track to molar mass distributions of technical lignins 2017 SULAEVA, I.; ZINOVJEV, G.; PLANKEELE, J. M.; SUMERSKII, I.; ROSENAU, T.; POTTHAST, A. ChemSusChem, 10, https://doi.org/10.1002/cssc.201601517
A fast track for the accurate determination of methoxyl and ethoxyl groups in lignin 2017 SUMERSKII, I.; ZWECKMAIR, T.; HETTEGGER, H.; ZINOVYEV, G.; BACHER, M.; ROSENAU, T.; POTTHAST, A. RSC Advances, 7, https://doi.org/10.1039/C7RA00690J
Sulfonic Acid Group Determination in Lignosulfonates by Headspace Gas Chromatography 2018 KORNTNER, P.; SCHEDL, A.; SUMERSKII, I.; ZWECKMAIR, T.; MAHLER, A.; ROSENAU, T.; POTTHAST, A. ACS Sust. Chem. Eng., 6(5), https://doi.org/10.1021/acssuschemeng.8b00011
Getting closer to absolute molar masses of technical lignins 2018 ZINOVYEV, G.; SULAEVA, I.; PODZIMEK, S.; RÖSSNER, D.; KILPELÄINEN, I.; SUMERSKII, I.; ROSENAU, T.; POTTHAST, A. ChemSusChem., 11(18), https://doi.org/10.1002/cssc.201801177
Ball milling’s effect on pine milled wood lignin’s structure and molar mass 2018 ZINOVYEV, G.; SUMERSKII, I.; ROSENAU, T.; BALAKSHIN, M.; POTTHAST, A. Molecules, 23, https://doi.org/10.3390/molecules23092223
Molar Mass Characterization of Crude Lignosulfonates by Asymmetric Flow Field-Flow Fractionation 2019 SULAEVA, I.; VEJDOVSZKY, P.; MAHLER, K. A.; ROSENAU, T.; POTTHAST, A. ACS Sust. Chem. Engin., 7(1), https://doi.org/10.1021/acssuschemeng.8b02856
Quantification of Volatiles from Technical Lignins by MHS-SPME-GC-MS 2019 GUGGENBERGER, M.; POTTHAST, A.; ROSENAU, T.; BÖHMDORFER, S. ChemSusChem, 7(11), https://doi.org/10.1021/acssuschemeng.9b00630
Hydrophobic Interaction Chromatography in 2 D Liquid Chromatography Characterization of Lignosulfonates 2020 MUSL, O.; SULAEVA, I.; BACHER, M.; MAHLER, K. A.; ROSENAU, T.; POTTHAST, A. ChemSusChem, 13(17), https://dx.doi.org/10.1002%2Fcssc.202000849